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Direct numerical simulations (DNS) of turbulent Rayleigh–Bénard convection in
a wide cylindrical container (aspect ratio Γ = 10) with a lateral wall have been
performed for the first time for the Rayleigh numbers 105, 106 and 107 and Prandtl
number Pr =0.7. Evaluating the thermal dissipation rates from the generated DNS
data, the formation and development of the thermal plumes and their interaction are
highlighted. Two new functions σ and τ are defined to determine quantitatively the
role of the turbulent background. Evaluating these functions from the DNS data, it
is shown that the turbulent background pushes the thermal plumes back and that
its contribution to the volume-averaged thermal dissipation rate increases with the
Rayleigh number. Further, it is proven analytically that the ratio of the area-averaged
(over the top or the bottom plates) to the volume-averaged thermal dissipation rate
is greater than or equal to the Nusselt number for all aspect ratios, and Prandtl and
Rayleigh numbers.

1. Introduction
Turbulent Rayleigh–Bénard convection, i.e. the thermally driven fluid motion

between a lower heated horizontal plate and an upper cooled plate, has been the
subject of many investigations. Reviews on this classical problem have been given
by Ahlers (2005), Kadanoff (2001), Ahlers, Grossmann & Lohse (2001) and Siggia
(1994).

Numerous experimental studies of Boussinesq Rayleigh–Bénard convection proved
the existence of different flow patterns depending on the Rayleigh (Ra) and Prandtl
(Pr) numbers and the aspect ratio (Γ ) of the considered container. Above but close to
the onset of convection (Ra ≈ 1.7 × 103) the flow patterns consist of straight rolls with
certain defects induced by the sidewalls (see for example Ahlers 2005). Further above
the onset the spiral–defect chaos evolves for low-Prandtl-number fluids (Pr � 1) as
reported by Morris et al. (1993). Assenheimer & Steinberg (1996) observed hexagon
patterns that occur for Rayleigh numbers around 6.8 × 103. Both types of polygon
convection cells – those with rising (l-cells) and those with descending (g-cells) motion
in the centre – can coexist with the spirals (see for example Getling 1998). When the
Rayleigh number exceeds a value of order 104 spoke patterns evolve as reported by
Busse (1994) and Clever & Busse (1998). These spokes tend to be nearly stationary for
lower Ra close to the onset of this type of convection and appear chaotically
when Ra exceeds 105. A further increase of Ra tears off unstable spokes to form
more independent large-scale flow structures generated in the thermal boundary
layers and driven by buoyancy. The thermal plumes play an important role in
the moderate-Rayleigh-number regime that begins at Ra = 105. Close to Ra = 108

large-scale circulation develops as reported for instance by Qiu & Tong (2001) and
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Shishkina & Wagner (2005a). According to the experimental investigation by Xi,
Lam & Xia (2004) this large-scale motion is initiated by thermal plumes.

Most of the flow characteristics strongly depend on the Rayleigh and Prandtl
numbers and the aspect ratio. Studying these dependences, Grossmann & Lohse
(2004) analysed the thermal dissipation rate and suggested investigating separately
the turbulent background and the thermal boundary layers together with the plumes.
Considering the thermal plumes as detached boundary layers, the authors split the
volume-averaged thermal dissipation rate into two contributions. The first is the ther-
mal dissipation rate due to the plumes together with the smooth parts of the boundary
layers and the second is the thermal dissipation rate of the turbulent background.
According to the Grossmann–Lohse ansatz the background part of the thermal
dissipation rate must dominate for large Ra. On the other hand, analysing the DNS
data obtained for a slender cylindrical container, Verzicco & Camussi (2003) showed
that the contribution from the horizontal boundary layers (without plumes) to the
volume-averaged thermal dissipation rate also increases with Ra. This observation
can be construed as evidence of a decreasing role of the plumes in thermally driven
convection for high Rayleigh numbers.

In order to investigate plume properties and to check whether the background
part of the thermal dissipation rate takes over for large Ra, Grossmann & Lohse
(2004) suggested separating the temperature signals into plume and non-plume parts.
Although the plumes are easily seen in experiments and in three-dimensional visu-
alizations of DNS data, quantitatively identifying plumes is non-trivial. Belmonte &
Libchaber (1996) used large values of the skewness of the temperature derivative to
indicate the plumes. Juliem et al. (1999) identified plumes using some threshold of
the temperature and the vertical velocity values, while Zhou & Xia (2002) used a
threshold of the temperature difference. In Ching et al. (2004) the plume velocity was
associated with a conditionally averaged velocity. In our plume extraction approach
we use local thermal dissipation rates, large values of which are associated with the
thermal boundary layers and plumes.

Experimental and numerical investigations of Rayleigh–Bénard convection indicate
a strong dependence of flow patterns on the aspect ratio. While large-scale circulation
is obtained for a low aspect ratio as documented by Verzicco & Camussi (2003), one
obtains a vanishing mean flow for the same Rayleigh number and a high aspect ratio
(see Shishkina & Wagner 2005a). In this paper we present results of the high-aspect-
ratio case Γ = 10, which is closely related to many astrophysical, geophysical and
meteorological problems.

2. Direct numerical simulations
The governing dimensionless equations for the Rayleigh–Bénard problem in the

Boussinesq approximation can be written as follows:

ut + u · ∇u + ∇p = Γ −3/2Ra−1/2Pr1/2∇2u + T z, ∇ · u = 0, (2.1)

Tt + u · ∇T = Γ −3/2Ra−1/2Pr−1/2∇2T , (2.2)

with u the velocity vector, T the temperature, ut and Tt their time derivatives and
p the pressure. Ra = αgH 3�T/(κν) denotes the Rayleigh number, Pr = ν/κ the
Prandtl number, Γ = D/H the aspect ratio with H the height and D the diameter
of the cylindrical container. Further, α is the thermal expansion coefficient, g the
gravitational acceleration, �T the temperature difference between the bottom and the
top plates, ν the kinematic viscosity and κ the thermal diffusivity. The dimensionless
temperature varies between +0.5 at the bottom plate and −0.5 at the top plate.
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An adiabatic lateral wall is prescribed by ∂T /∂r = 0. Finally, on the solid walls the
velocity field vanishes according to impermeability and no-slip conditions.

In the following analysis we use the results of the DNS which we conducted
for turbulent Rayleigh–Bénard convection in a cylindrical container for Rayleigh
numbers 105, 106, 107, Pr = 0.7 and Γ = 10. The simulations were performed with
the fourth-order-accurate finite volume method developed for solving (2.1), (2.2) in
cylindrical coordinates (z, ϕ, r) on staggered non-equidistant grids. For details on the
method, namely the fourth-order discretization, the calculation of the velocity field at
the cylinder axis, the hybrid explicit/semi-implicit time stepping and the numerical
stability of the method refer to Shishkina & Wagner (2004, 2005b).

The computational mesh consists of (110, 512, 192) nodes clustered in the vicinity of
the rigid walls. This mesh is fine enough to resolve all relevant turbulent scales, since
the mean mesh width hDNS = maxi(�zi ri�ϕi �ri)

1/3 is smaller than the mesh width
h(Ra) needed to resolve the Kolmogorov scale for all considered Rayleigh numbers.
According to Grötzbach (1983), h(Ra) = πΓ −1Pr1/2(Nu − 1)−1/4Ra−1/4, where

Nu = Γ 1/2Ra1/2Pr1/2〈uzT 〉t,S − Γ −1

〈
∂T

∂z

〉
t,S

(2.3)

is the Nusselt number and 〈·〉t,S denotes time and area averaging. In particular,
h(105) = 4.37 × 10−2, h(106) = 1.98 × 10−2 and h(107) = 9.20 × 10−3, while hDNS =
6.54 × 10−3.

In figure 1 a perspective view of 20 isotherms in a subdomain reveals the
three-dimensional nature of the hot plumes calculated in the DNS for Ra = 105.
The corresponding instantaneous temperature fields in (ϕ, r)-planes located at half-
distance between the plates (figure 2a) and close to the heated bottom plate (figure 2d)
reveal the horizontal extent of hot and cold plumes. Comparing hot coherent
structures in figure 2(a) with those in figure 2(b) and 2(c) it is observed that they
move apart for high Rayleigh numbers. In figure 2(d) the temperature distribution
for Ra = 105 close to the bottom plate reflects large-scale structures with a number of
fingers. The temperature fields in figure 2(e) and figure 2(f) show a reorganization of
these large-scale structures. At the same time the number of attached fingers increases
with the Rayleigh number.

To provide a quantitative measure for the observations mentioned above, we
investigated the azimuthally averaged spectral distribution of the advective heat
transport uzT in the central horizontal cross-section and determined the wavelength
of its maximum (λmax). The value λmax is associated with the typical size of large
coherent flow structures as proposed by Hartlep, Tilgner & Busse (2003). In figure 3
the wavelengths λmax are presented as evaluated from the DNS data for the considered
Rayleigh numbers. These wavelengths agree well with those by Fitzjarrald (1976), who
performed experiments in rectangular containers.

Statistical averaging of the DNS data was performed for more than 6, 18 and 33
time units for Ra = 105, 106 and 107, respectively. Evaluating the Nusselt numbers
we obtained Nu= 4.1 (Ra = 105), Nu= 8.2 (Ra = 106) and Nu= 16.4 (Ra = 107). The
resulting scaling law Nu= 0.128Ra0.301 is in general agreement with those by Niemela
et al. (2000) and Wu & Libchaber (1992), who reported Nu= 0.124Ra0.309 for Γ = 0.5
and Nu= 0.147Ra0.287 for Γ =6.7, respectively.

3. Thermal dissipation rate analysis
Following Grossmann & Lohse (2004), who considered the thermal plumes as

detached boundary layers, we associate the thermal boundary layers and plumes with
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Figure 1. Hot plumes visualized with 20 isotherms for T ∈ [0, 0.5] in a subdomain of width
0.2R, DNS for Ra = 105, Pr = 0.7, Γ = 10.

(a) (b) (c)

(d) (e) ( f )

Figure 2. Snapshots of the temperature fields −0.37 � T � 0.37 for Ra = 105 (a, d) Ra = 106

(b, e), Ra = 107 (c, f ) in the center cross-section z = 0.5H (a, b, c) and in a plane close to the
bottom for z =H/(2Nu) (d, e, f ). The colour scale ranges from blue (negative values) through
white (zero) to red (positive values).

large values of the thermal dissipation rate

εθ = Γ −3/2Ra−1/2Pr−1/2(∇T )2. (3.1)

In their theory the thermal dissipation rate is split into a plumes-plus-boundary-layers
and a background components. The former can dominate for lower and the latter
must dominate for higher Rayleigh numbers.

In order to check their hypothesis we define the functions τ (ξ ) and σ (ξ ) according
to (3.2) and evaluate the thermal dissipation rates εθ from the DNS data. The function
τ (ξ ) describes the percentage of the fluid volume for which the thermal dissipation rate
does not exceed ξ × 100 % of its maximum value εθ,max = maxV εθ . The function σ (ξ )
describes the contribution to the volume-averaged thermal dissipation rate from those
parts of the domain where εθ does not exceed ξ × 100 % of its maximum. Namely,

τ (ξ ) = 〈δ(ξ )〉V , σ (ξ ) =
〈δ(ξ )εθ〉V

〈εθ〉V

, (3.2)

where δ(ξ ) is the threshold function,

δ(ξ ) = 1, if
εθ

εθ,max

� ξ, and δ(ξ ) = 0 otherwise.
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Figure 3. Wavelength of the maximum in the spectral distribution of lateral heat transport
over Ra for Pr = 0.7: �, experiments in rectangular container by Fitzjarrald (1976); �, DNS in
a rectangular domain by Hartlep et al. (2003); and +, present DNS in the cylindrical domain.
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Figure 4. Portion of the domain, where εθ (x) � ξεθ,max (a) and contribution to the
volume-averaged thermal dissipation rate from the parts of the domain, where εθ (x) � ξεθ,max

(b), evaluated in the DNS for Ra = 105 (——–), Ra = 106 (– – – –) and Ra = 107 (· · · · · ·).

In figure 4 τ (ξ ) and σ (ξ ) are plotted as calculated from the DNS data. From
figure 4(a) it is concluded that those parts of the domain where the thermal dissipation
rate is less than 0.1 % of its maximum value (i.e. ξ = 10−3) equals 25.3 % (Ra = 105),
57.4 % (Ra = 106) and 85.3 % (Ra = 107) of the whole domain, while figure 4(b) reveals
that these parts contribute 0.4 % (Ra =105), 2.1 % (Ra = 106) and 8.9 % (Ra = 107)
to the volume-averaged thermal dissipation rate.

Since the turbulent background is indicated by lower values, and the plumes
together with the boundary layers by higher values, of the thermal dissipation rate,
there exists a value of ξ which separates these two regions. Furthermore, figure 4
reveals that the values of τ (ξ ) and σ (ξ ) obtained for a certain Rayleigh number
are always higher than the corresponding values for a lower Ra. Thus, the results
presented above show that both the portion of the whole domain which corresponds to
the turbulent background, and the background contribution to the volume-averaged
thermal dissipation rate, increase with the Rayleigh number. This is true at least for
the wide containers and moderate Rayleigh numbers considered and supports the
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Figure 5. Portion of the horizontal cross-section, where εθ (x) � ξεθ,max (a) and contribution
to the area-averaged thermal dissipation rate from the parts of the horizontal cross-section,
where εθ (x) � ξεθ,max (b), evaluated in the DNS for Ra = 105 and different distances from the
bottom, z = 0 (——–), z = H/(4Nu) (– – – –), z = H/(2Nu) (· · · · · ·) and z = 0.5H (– · – · –).

conjecture by Grossmann & Lohse (2004) that the background part of the thermal
dissipation rate dominates for large Ra.

Further, simulating Rayleigh–Bénard convection in a slender cylindrical domain,
Verzicco & Camussi (2003) observed that the contribution of the horizontal boundary
layers (without plumes) to the volume-averaged thermal dissipation rate increases with
Ra. As shown above, the contribution of the turbulent background also increases.
Therefore we conclude that the role of the plumes in thermal convection decreases
with increasing Rayleigh number.

Similarly to (3.2) we introduce the functions

τs(ξ, z) = 〈δ(ξ )〉Sz
, σs(ξ, z) =

〈δ(ξ )εθ〉Sz

〈εθ〉Sz

,

which determine the portion of the horizontal cross-section Sz and the contribution
to the area-averaged thermal dissipation rate from those parts of Sz where εθ (x) �
ξεθ,max, for different z. In figure 5 these functions are depicted for z =0, z = H/(4Nu),
z = H/(2Nu) and z = 0.5H as evaluated from the DNS for Ra = 105. One can see
that near the horizontal plates the contribution of the turbulent background which
corresponds to small values of ξ is negligible. On the other hand, large values of
the thermal dissipation rate which correspond to large values of ξ are hardly ever
reached in the bulk.

Finally we recall and derive some analytical relations, which are useful for our
thermal dissipation rate analysis. Formally, a certain number of mean characteristics
can be obtained by multiplication of the energy equation (2.2) with any function η

and further time and volume averaging. For example, taking η = z we calculate the
mean heat transport 〈uzT 〉t,V = Γ −1/2Ra−1/2Pr−1/2(Nu−1) (see Kerr 1996), while with
η = T we obtain the mean thermal dissipation rate (see Grossmann & Lohse 2000)

〈εθ〉t,V = Γ 1/2Ra−1/2Pr−1/2Nu, (3.3)

where 〈·〉t,V denotes time and volume averaging. Taking η = T 2 we obtain
〈C(T , εθ )〉t,V =0, with the function C(T , εθ ) = T εθ used later in § 4.
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A relation between the time and volume averaged 〈εθ〉t,V and the time and area
averaged 〈εθ〉t,S thermal dissipation rates, where S denotes the surface of the top or
the bottom plate, can be obtained using the Cauchy–Bunyakovsky–Schwarz inequality
〈f1f2〉2

S � 〈f 2
1 〉S〈f 2

2 〉S which holds for any functions f1, f2 ∈ L2(S). Here L2(S) is the
space of functions which are square integrable on S. Taking f1 = ∇T and f2 = 1 we
find 〈∇T 〉2

t,S � 〈(∇T )2〉t,S . This inequality together with the definition of the Nusselt

number (2.3) leads to Γ 2Nu2 � 〈(∇T )2〉t,S . On the other hand, combining (3.3) with
(3.1) we get 〈(∇T )2〉t,V = Γ 2Nu.

From the last two relations the inequality

Nu �
〈εθ〉t,S

〈εθ〉t,V

(3.4)

follows, which expresses that the top (or the bottom) area-averaged thermal dissipa-
tion rate is at least Nu times larger than the volume-averaged thermal dissipation
rate for all Prandtl and Rayleigh numbers. We evaluated the function β(Ra) =
Nu−1〈εθ〉t,S/〈εθ〉t,V from our DNS data and obtained β(105) = 1.41, β(106) = 1.36,
β(107) = 1.51.

Relation (3.4) also indicates that the wall-normal mesh resolution at the bottom
or top plates must be at least

√
Nu times finer than in the bulk region to resolve

properly the flow near the plates.

4. Plumes extraction
In order to separate visually the boundary layers, and the hot and cold plumes,

all of which are indicated by large positive values of the thermal dissipation rate, we
consider the function

C(T , εθ ) = T εθ .

While plumes are visible in the instantaneous temperature field presented in figure 6(a)
as mushroom-like structures, they look like the letter π if the snapshot of C(T , εθ )
in figure 6(b) is considered. The red π-structures indicate hot fluid that moves from
the bottom to the top, and the blue inverted π-structures reflect zones of cold fluid
moving in the opposite direction.

For the case Ra =105 snapshots of C(T , εθ ) and superimposed velocity vectors are
presented in figure 7 in three cross-sections. Plots (a), (b) and (c) show the cross-
sections within the bottom boundary layer for z = 0.1H , slightly outside the bottom
boundary layer for z = 0.2H and in the middle for z =0.5H . In figure 7(a) the velocity
vectors reflect the displacement of the fluid due to the cold plumes entering the hot
boundary layer. Due to the wall effect the cold fluid moves from the centres of the cold
plume caps towards their borders and pushes away the hot fluid, which is channelled to
form the roots of hot plumes. In the bulk region but still close to the bottom boundary
layer for z = 0.2H presented in figure 7(b) the fluid moves from the roots towards the
stems of the hot plumes. The stems of both cold and hot plumes are generated at the
intersections of the roots. Finally, the velocity vectors in the middle cross-section for
z = 0.5H in figure 7(c) highlight hot fluid moving through the stems towards the caps
of the hot plumes. The cold and hot plumes look similar, but they settle upside down.

In figure 8 for each considered Rayleigh number we present in one graph C(T , εθ )
for z = H −λθ and z = λθ , where λθ = H/(2Nu) is the thickness of the thermal boundary
layer. The figure illustrates that the roots of hot and cold plumes have a tendency
to intersect at right angles. Based on the above observations a structure of a hot
plume and nesting of the hot and cold plumes in a wide container are sketched in
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→
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(a)

(b)

Figure 6. Snapshots of the temperature field T (a), −0.5 � T � 0.5, and of C(T , εθ )
(b), −0.659 � C(T , εθ ) � 0.645, obtained in DNS for Ra = 105. Close-up views of the plumes
are presented on the right. The colour scales range from blue (negative values) through white
(zero) to red (positive values).

(a) (b) (c)

Figure 7. Snapshots of C(T , εθ ) in the horizontal cross-sections for z = 0.1H (a), z = 0.2H
(b), z = 0.5H (c) with superimposed velocity vectors as obtained in the DNS for Ra = 105.
Close-up views are presented below. The colour scale is according to figure 6(b).
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(a) (b) (c)

Figure 8. Superimposed instantaneous fields of C(T , εθ ) in horizontal cross-sections for z = λθ

(red) and z = H − λθ (blue) obtained in the DNS for Ra =105 (a), Ra = 106 (b), Ra = 107

(c). The colour scale is according to figure 6(b).

Roots →

Stem →

Cap →

(a) (b)

Figure 9. Sketch of a hot plume structure (a) and the formation of hot and cold plumes in
wide containers (b) deduced from the DNS data for moderate Rayleigh numbers.

figure 9. Of course, in contrast to the sketch, plumes have a chaotic appearance, the
number of roots can be different (not only four) and the shape of the plume caps
is not necessarily rectangular. Further, the plumes start to cluster in certain regions
of predominantly rising or descending motion if the Rayleigh number is increased
from Ra = 105 to Ra = 107. The distance between these regions of clustered plumes
increases and the roots of the plumes loose their tendency to intersect perpendicularly.

Generally, the analysis of the DNS data highlights the three-dimensional nature of
the plumes in the moderate-Rayleigh-number regime. This distinguishes them clearly
from two-dimensional rolls, l- and g-cells or spoke structures that have been observed
in experiments at lower Rayleigh numbers. We also note that the large-scale structures,
which Busse (1994) observed in shadowgraphs in experiments for Ra = 2.3 × 105 and
Pr = 170, look similar to those we obtained in the DNS for Ra = 105 and Pr = 0.7.

5. Conclusions
Analysing the thermal dissipation rate and its local distribution based on DNS

data for Rayleigh numbers 105, 106, 107, Pr = 0.7 and Γ =10, it was shown that the
portion of the whole domain which corresponds to the turbulent background and
the contribution to the volume-averaged thermal dissipation rate from the turbulent
background increase with the Rayleigh number. It was further shown that plumes,
which have a tendency to be arranged in a regular manner for Ra = 105, start to cluster
for higher Rayleigh numbers to form a large-scale circulation. Analytically we proved
that the area-averaged (over the top or the bottom plates) thermal dissipation rate is at
least Nu times larger than the volume-averaged thermal dissipation rate for all Prandtl
and Rayleigh numbers. Finally, analysing correlations between the temperature field
and thermal dissipation rates we introduced a new way to extract plumes.
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